

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 60

[6M]

R19

Note: Answer **ONE** question from each Unit (**5** × **12** = **60 Marks**)

UNIT - I

- 1. a) A Gaussian random voltage X for which $a_X = 0$ and $\sigma_X = 4.2$ V appears [6M] across a 100- Ω resistor with a power rating of 0.25 W. What is the expected probability that the voltage will cause an instantaneous power that exceeds the resistor rating?
 - b) Explain various types of random variable with suitable examples. [6M]

(OR)

2. a) The given function is a valid probability density function. Calculate the [6M] value for constant A.

$$f_{X}(x) = \begin{cases} 0 & :x < -1 \\ A(1 - x^{2}) \cos\left(\frac{\pi x}{2}\right) & :-1 \le x \le 1 \\ 0 & :x > 1 \end{cases}$$

b) Find P(X > 1) and P(X \leq -1) for a given Gaussian random variable X has [6M] $a_X = 4$ and $\sigma_X = 4$.

UNIT - II

- 3. a) Explain these concepts: Monotonic Transformations for a Continuous [6M] Random Variable and Non-monotonic Transformations for a Continuous Random Variable.
 - b) A random variable X can have values -4, -1, 2, 3 and 4, each with [6M] probability 1/5. Find the density function, mean, and the variance of the random variable $Y = 3X^2$.

(OR)

- 4. a) Describe the expected value and expected value of function of a random [6M] variable.
 - b) Find the characteristic function of a Gaussian random variable which has [6M] zero mean and unit variance.

UNIT – III

- 5. a) Find and sketch density function of $Y = X_1 + X_2 + X_3$. Three statistical [6M] independent random variables X_1 , X_2 , and X_3 all have the same density function $f_X(x) = \frac{1}{a}[u(x_i) u(x_i a)]$ where i = 1, 2, 3 and a > 0 is constant.
 - b) State the joint distribution and list out its properties.

(OR)

- 6. a) State jointly Gaussian random variable and list out properties of Gaussian [6M] random variables.
 - b) Sketch $F_{X,Y}(x, y)$. The joint distribution function for two random variables [6M] X and Y is $F_{X,Y}(x, y) = u(x)u(y)[1 e^{-ax} e^{-ay} + e^{-a(x+y)}]$ Here u(.) is the unit step function and a > 0.

UNIT –IV

- 7. a) Find the autocorrelation and auto covariance of the process of [6M] $X(t) = X_0 + Vt$ where X_0 and V are statistically random variables uniformly distributed on intervals $[X_{01}, X_{02}]$ and $[V_1, V_2]$, respectively.
 - b) Write about band limited random processes and list their properties. [6M]

[6M]

[6M]

- 8. a) Explain about Poisson random process. [6M]
 - b) Assume a random process has a power spectrum,

$$\varphi_{XX}(w) = \begin{cases} 4 - \left(\frac{w^2}{9}\right) : |w| \le 6\\ 0 & : \text{ elsewhere} \end{cases}$$

Find the average power and autocorrelation function of the process.

UNIT -V

- 9. a) Derive the convolution of the random response of linear system. [6M]
 - b) Define the average noise figure and derive the expression for the system [6M] output noise power.

(OR)

- 10. a) Derive cross-correlation functions of input X(t) and output Y(t). [6M]
 - b) Explain linear system fundamentals.

* * * * *